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THE EFFECTS OF A RETREATING LONGWALL 
ON A THREE-ENTRY GATE ROAD SYSTEM

By Richard A, Allwes, 1 Jeffrey M. L istak, 1 Gregory J, Chekan,1 
and Daniel R. Babich2

ABSTRACT

The Bureau of Mines conducted an in -m ine case study on two consecutive  
th re e -e n try  gate road systems designed in  accordance w ith  the s t i f f -  
y ie ld  p i l l a r  design concept. This Bureau study was conducted in  order 
to  fu r th e r  develop technology th a t w i l l  improve the h e a lth  and s a fe ty  
aspects o f lo n g w all m ining. Support lo ad in g  and s tr a ta  a c t iv i t y  were 
m onitored to  d e te rmine the e ffe c ts  o f r e t r e a t  longw all mining on the  
gate road ground c o n tro l system. Analyses o f p i l l a r  s tress  and roof 
b o lt  load ing  h is to r ie s  revealed  th a t headgate ro o f support elements ex­
perienced cum ulative load ing  throughout the l i f e  o f the lo n g w all panel. 
T a ilg a te  p i l l a r  loadings had s ig n if ic a n t ly  d i f fe r e n t  h is to r ie s  from the 
lo ad in g  h is to r ie s  of the headgate p i l l a r s .  Stress r e l i e f  occurred in  
the ta i lg a t e  p i l la r s  fo llo w in g  the passage of the longw all fa c e . More­
over, the s t i f f - y i e l d  p i l l a r  design , w ith  the abutment p i l l a r  placed  
ad jacent to  the working panel when p a rt o f the headgate system, provided  
e f fe c t iv e  ground c o n tro l in  th a t no m ajor ro o f f a l l s  or ro o f problems 
were experienced in  the headgate or ta i lg a te  systems during longw all 
m ining.

'Mining engineer.
Supervisory mining engineer.
Pittsburgh Research Center, Bureau of Mines, Pittsburgh, PA.



INTRODUCTION

The design o f a lo n g w all ground c o n tro l 
system req u ires  knowledge of the lo c a l  
geology, the in  s itu  s tress  f i e ld ,  and 
the  m echanical p ro p e rtie s  o f the coal and 
s tr a ta  o v e rly in g  and underly ing  the coal 
seam. An understanding o f how longw all 
m ining a ffe c ts  the s t a b i l i t y  o f gate road 
e n tr ie s  and the load ing  o f roo f support 
elements is  as im portant to  gate road 
design as are the s tru c tu ra l c h a ra c te r is ­
t ic s  o f the fu tu re  lo n g w all s i t e .  An e f ­
fe c t iv e  ground c o n tro l system w i l l  con­
t r o l  the r e d is tr ib u t io n  o f s tress  in  the  
surrounding rock mass o f the gate road 
during  panel e x tra c tio n  to  a to le ra b le  
le v e l  so th a t the stresses and s tra ta  
deform ations are  not beyond the cap ac ity  
o f the ro o f support elem ents. Once the  
cap ac ity  o f one of the roo f support e le ­
ments is  exceeded, s t ra ta  fa i lu r e  is
im m inent.

The design of a gate road ground con­
t r o l  system is  o fte n  based upon previous  
experience w ith  p i l l a r  recovery or long­
w a ll  m ining a t the mine or a t another 
mine w ith  s im ila r  geo log ic  co n d itio n s . 
An o p e ra to r 's  dependency on past e x p e ri­
ence is  u s u a lly  due to  a lac k  o f under­
standing o f ,  and in fo rm atio n  on the  
e ffe c ts  o f lo n g w all mining on support
load ing  and s tr a ta  a c t iv i t y .  Common
problems associated  w ith  gate road design  
in c lu d e  s e le c tin g  a gate road co n fig u ra ­
t io n ,  s iz in g  the p i l l a r s ,  and determ ining  
the amount and type o f a r t i f i c i a l  sup­
ports  req u ired  to  m a in ta in  e n try  s t a b i l ­
i t y .  In  a d d itio n  to  the coal p i l la r s ,  
the roo f support elements o f a gate road 
ground c o n tro l system inc lude a r t i f i c i a l  
supports such as roo f b o lts , tru sses , 
crossbars, posts , c r ib s , and props.

S ig n if ic a n t  s tress  in creases , c a lle d  
abutment pressures , are experienced by
the gate road p i l la r s  and surrounding  
rock mass as a re s u lt  o f ro o f s tra ta  can- 
t i le v e r in g  over the mined-out longw all 
p an el. Researchers and o p era to rs , a ls o , 
have reported  a bu ildup of abutment pres­
sures in  the ta i lg a te  system o f the sec­
ond or th ir d  consecutive longw all panel 
(_1_—_3) . 3  The d e te r io ra t io n  o f ta i lg a te  
e n try  s t a b i l i t y  is  a t t r ib u te d  to  an

increase in  abutment pressures as each 
successive longw all panel is  mined.

Only two so lu tio n s  to  the problem of 
abutment pressures are c u rre n tly  known. 
One s o lu tio n  is  to  leave a b a r r ie r  p i l l a r  
between ad jacent longw all panels in  order 
to  is o la te  the e ffe c ts  o f one longw all 
panel from another. This s o lu tio n  is  im­
p ra c t ic a l  because two d is t in c t  sets o f 
gate roads have to  be developed fo r  each 
lo n g w all p an e l, which re s u lts  in  a loss  
o f coal reserves , h igher support system 
co sts , and an increase in  development 
tim e . The second s o lu tio n  is  to  p ro p erly  
design the gate roads in  order to  c o n tro l 
the abutment pressures to a to le ra b le  
le v e l .

Two basic  gate road p i l l a r  design con­
cepts e x is t .  One is  the s t i f f  p i l l a r  de­
sign concept, and the o ther is  the y ie ld  
p i l l a r  design concept ( 2 ) .  In  the s t i f f  
p i l l a r  design concept, la rg e  p i l l a r s ,  
c a lle d  abutment p i l la r s ,  are used to  
m ain ta in  en try  s t a b i l i t y  in  the gate  
roads. The abutment p i l la r s  ad jacent to  
the working panel w i l l  provide enough re ­
s is tan ce  against the ro o f to c rea te  a 
shear o f the ro o f s t ra ta  a t the r ib  l in e .  
Extensive shearing w i l l  reduce the amount 
of s tra ta  c a n tlle v e r in g  over the mined- 
out panel. This w i l l  a llo w  the gob to  
conso lida te  and accept lo ad , thus de­
creasing the amount o f abutment pressures  
occurring  in  the gate roads. In  the  
y ie ld  p i l l a r  design concept, sm all p i l ­
la r s ,  c a lle d  y ie ld  p i l la r s ,  are used to  
m ain ta in  gate road en try  s t a b i l i t y .  The 
y ie ld  p i l la r s  are designed fo r  l im ite d  
support c a p a c ity , and any excessive load­
ing  due to longw all mining is  tra n s fe rre d  
to  the ad jacent unmined panel and to  the  
gob area of the p rev io u s ly  mined-out 
panel.

The s t i f f - y i e ld  p i l l a r  design is  a com­
b in a tio n  o f the two basic design concepts 
and u t i l i z e s  both y ie ld  and abutment p i l ­
la r s .  In  a headgate system in  which the  
abutment p i l la r s  are placed ad jacent to

^Underlined numbers in  parentheses re ­
fe r  to  items in  the l i s t  o f re ferences a t  
the end o f th is  re p o rt.
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the working panel, the y ie ld  p i l la r s  
m ain ta in  e n try  s t a b i l i t y  w h ile  the abut­
ment p i l la r s  cause the ro o f s tra ta  to  
shear. When the y ie ld  p i l l a r  is  p a rt of 
the ta i lg a t e  system and ad jacent to  the  
working panel, the y ie ld  p i l la r s  tra n s fe r  
a l l  excessive load ing  to th e ir  companion 
abutment p i l la r s  and the co n so lid a tin g  
gob. C o n flic t in g  re s u lts  over the use of 
these design concepts fo r  m ain ta in in g  en­
t r y  s t a b i l i t y  in  both headgate and t a i l ­
gate systems have been reported  by v a r i ­
ous researchers and operators  ( 1 , 3 -5 ) .

An in v e s tig a tio n  was conducted using 
f i e ld  in te rv ie w  methods to  determine  
the data and in fo rm atio n  requirem ents of 
the underground coal mining in d u s try  fo r  
im proving coal mine ground co n tro l 
technology and procedures ( 6 ) .  Mine

operators expressed major in te re s t  in  
gate road e n try  design and ground co n tro l 
systems. As p a rt of a program to  develop 
technology th a t w i l l  improve the h e a lth  
and s a fe ty  aspects o f longw all m ining, 
the Bureau of Mines conducted an in-m ine  
case study a t a cooperating mine. An in ­
strum entation  p lan  was developed to moni­
to r  the changes in  p i l l a r  s tre s s , roof 
b o lt  lo ad in g , and s tr a ta  movement a t se­
le c te d  areas along two consecutive long­
w a ll gate roads (_7) • The re s u lt in g  data  
provide in s ig h t in to  the e ffe c ts  of long­
w a ll  mining on gate road e n try  s t a b i l i t y  
and ro o f support elements th a t are essen­
t i a l  in  the design of a ground co n tro l 
system. This Bureau re p o rt presents the 
f i n a l  re s u lts  of th a t study.

CASE STUDY

DESCRIPTION OF PANEL AND GATE ROADS

Figure 1 shows the general layout of 
the longw all panels under in v e s tig a tio n .

Panel 2 is  approxim ately 470 f t  wide and 
4 ,800  f t  long. The amount of overbur­
den v a r ie s  continuously along the long­
w a ll  panel from a minimum o f 330 f t  to a

—  D irection of mining

0  5 0 0  1 ,000 1____ i____Li
S c a le , f t

FIGURE 1. - Gate road geometry showing array locations and corresponding overburden heights.
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maximum o f 800 f t .  The gate road systems 
(4  L e f t—-Gate A and 5 L e f t— Gate B) are  
g e o m e tric a lly  id e n t ic a l  th re e -e n try  sys­
tems u t i l i z in g  a s t i f f - y l e l d  p i l l a r  gate  
road design , w ith  the abutment p i l l a r  
placed ad jacen t to  the working panel as 
p a rt o f the  headgate system. The planned 
dimensions fo r  the p i l la r s  are  95 f t  by 
9 5  f t  fo r  the abutment ( s t i f f )  p i l l a r s ,  
and 95 f t  by 36 f t  fo r  the y ie ld  p i l l a r s .  
The e n tr ie s  and crosscuts are  approxi­
m ate ly  15 f t  w ide. The e x tra c tio n  h e ig h t 
in  the gate  roads is  approxim ately 6 - 1 / 2  
f t .  I t  should be noted th a t ,  in  prac­
t i c e ,  p i l l a r  dimensions v a rie d  from the  
s ta te d  design values; in d iv id u a l p i l l a r  
dimensions are shown in  the te x t where 
a p p ro p ria te .

GEOLOGY

The coalbed e x tra c te d  a t the study mine 
is  the P ittsb u rg h  No, 8  c o a l. N orm ally , 
the  shale  p a r tin g  and r id e r  coal are  a lso  
e x tra c te d , re s u lt in g  in  an average ex­
t r a c t io n  h e ig h t o f 6 - 1 / 2  f t  ( f i g .  2 ) ,  
This p ra c tic e  u s u a lly  re s u lts  in  an imme­
d ia te  ro o f rock o f th in ly  bedded gray  
shale  («3  f t  t h ic k ) ,  which grades ver­
t i c a l l y  in to  a th ic k ly  bedded c a lc a re ­
ous shale  (»4 f t  t h ic k ) .  The calcareous  
s h a le , in  tu rn , grades v e r t ic a l ly  in to  
the  massive Redstone Limestone member 
(»12 f t  t h ic k ) .  The next coalbed above 
th e  P ittsb u rg h  No, 8  is  the Redstone 
Coalbed; these coalbeds are separated by 
approxim ately 21 f t  o f in te rb u rd e n . The 
Redstone Coalbed is  only 1 f t  th ic k  in  
the  study a rea .

The immediate f lo o r  rock o f the P i t t s ­
burgh No. 8  Coalbed is  a competent gray  
shale  2 - 1 / 2  f t  th ic k  throughout the study 
a re a . The gray shale  is  u n d e rla in  by 
approxim ately 3 f t  o f c laystone .

INSTRUMENTATION PLAN

Figure  1 shows the p o s itio n s  of the  
fo u r instrum ented a rea s , c a lle d  a rra y s ,  
and th e ir  corresponding overburden  
h e ig h ts . There is  a v e r t ic a l  exaggera­
t io n  because the sca le  fo r  the mine la y ­
out is  much sm alle r than the sca le  fo r  
the  h e ig h t o f overburden. The 4 L e ft  
gate  road, Gate A, contains arrays  A] and

Redstone Coal

Redstone Limestone

Shale

Pittsburgh Coal 
(No. 8) 

Shale 
Claystone

FIGURE 2. - Generalized stratigraphic column 
of panel 2 area.

A2 located  under 450 f t  and 520 f t  of 
overburden, re s p e c tiv e ly . The arrays  
were pos itioned  a t le a s t  800 f t  away 
from the  b a r r ie r  p i l la r s  lo cated  a t  the  
beginning and end o f the lo n g w all pan­
e ls .  This was done to  avoid any e f fe c t  
which the  b a r r ie r  p i l la r s  could have on 
the load ing  conditions occurring  in  the  
a rra y s ,

F igure  3 (a  re p re s e n ta tiv e  a rra y ) shows 
the  r e la t iv e  lo c a tio n s  of the  v ib r a t ­
in g  w ire  s tressm eters , convergence s ta ­
t io n s , m u ltip o in t extensometer s ta t io n s ,  
and f la t ja c k  U -c e ll  groups. Owing to  the  
problems experienced during development, 
the  a c tu a l lo c a tio n  or numbering o f the  
in s tru m en tatio n  in  each a rray  v a rie s  
s l ig h t ly  from the re p res e n ta tio n  shown 
in  f ig u re  3. In  order to  measure the  
changes in  v e r t ic a l  u n ia x ia l s t re s s , the  
stressm eters were in s ta l le d  in  the  abut­
ment and y ie ld  p i l l a r s .  The stressm eters  
were pos itioned  to  determ ine the g en era l 
stress  d is tr ib u t io n s  In  the abutment and 
y ie ld  p i l la r s  by m onitoring  the s tress  
changes lengthw ise and w idthw ise across
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FIGURE 3, - Typical instrumentation plan for an array.

the p i l l a r s .  T h e ir p o s itio n s  a lso a l ­
lowed the d iffe re n c e  between the v e r t ic a l  
stress  change in  the core o f the p i l l a r  
and in  i t s  o u ter la y e r  or "skin" to  be 
measured. A d d it io n a lly , the stressm eters  
served to  determ ine the s tress  changes in  
th e  p i l la r s  as a fu n c tio n  of longw all 
face  p o s itio n  and overburden h e ig h t, and 
to  compare the  s tress  changes in  the  
abutment p i l la r s  to  those in  the y ie ld  
p i l l a r s .

F la t ja c k  U -c e lls  were used to  measure 
the  load changes on the 8 - f t  mechani­
c a l roo f b o lts  in  the crosscuts and 
e n tr ie s .  These U -c e lls  are  composed of 
two th in -w a lle d , o i l - f i l l e d ,  copper b lad­
ders; they measure b o lt  loads up to
20,000 lb f  w ith  an accuracy o f ±500 l b f .  
The U -c e lls  were in s ta l le d  in  fo u r groups 
o f 12, F igure 3 shows the lo c a tio n  of

each U -c e ll  group in  the a rra y ; f ig u re  4 
shows an enlarged view of the f la t ja c k  
U -c e l l  arrangements.

Convergence and m u ltip o in t extensometer 
s ta tio n s  were in s ta l le d  near the f la t ja c k  
U -c e l l  groups ( f i g .  3 ) .  A combination  
convergence and m u ltip o in t extensometer 
s ta t io n  is  shown in  f ig u re  5. The m u lt i­
p o in t extensometer s ta t io n  measures d i f ­
f e r e n t ia l  s tra ta  movement w ith in  the mine 
ro o f r e la t iv e  to the uppermost ro o f an­
chor p o in t. The convergence s ta t io n  mea­
sures o v e ra ll  ro o f to f lo o r  convergence. 
The purpose of the combined s ta tio n s  was 
to  d i f f e r e n t ia t e  between roo f sag and 
f lo o r  heave. However, the m u ltip o in t ex­
tensometers d id  not fu n c tio n  p ro p e rly , 
and only roo f to  f lo o r  convergence could 
be determ ined.

DATA COLLECTION AND ANALYSIS

The v ib ra t in g  w ire  s tressm eters , f l a t -  were monitored tog e th er when they were
ja c k  U -c e lls ,  and convergence s ta tio n s  p a r t o f the heddgate system. [The 4 L e ft
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FIGURE 4. - Enlarged view of flatjack U-cell 
arrangement.

gate road, Gate A, which contains arrays  
A| and A2 , was a headgate during the  
e x tra c tio n  o f panel 1; the 5 L e ft  gate  
road, Gate B, which contains arrays B| 
and B2 , was a headgate during the e x tra c ­
t io n  o f panel 2 ( f i g .  1 ) . ]  However, only  
th e  v ib ra t in g  w ire  stressm eters were mon­
ito re d  when they were p a rt o f the t a i l ­
ga te  system. (The 4 L e f t  gate road, Gate 
A, was a ta i lg a t e  during  the e x tra c tio n  
o f panel 2; the 5 L e f t  gate road, Gate B, 
was a ta i lg a t e  during the e x tra c tio n  of 
panel 3 . )  A ccord ing ly , only convergence 
and ro o f b o lt  load changes occurring  in  a 
headgate system, and s tress  changes oc­
cu rrin g  In  both headgate and ta i lg a t e  
systems, are discussed h ere .

VIBRATING WIRE STRISSMET1R—
DATA COLLECTION

As the lo n g w all face  progressed along  
the len g th  o f the p an e ls , readings were 
recorded fo r  a l l  o f the stressm eters;

FIGURE 5. - Combination convergence and 
multipoint extensometer station.

these readings continued w ith  g re a te r  
frequency as the face  was in  the v ic in i t y  
(±100 f t )  o f the a rra y s . The i n i t i a l  
read in g s , taken when the stressm eters  
were o r ig in a l ly  in s ta l le d ,  to g e th er w ith  
the a d d it io n a l readings recorded during  
the advance o f the longw all fa c e , were 
used to  determ ine the change in  the v e r­
t i c a l  u n ia x ia l s tress  occurring  in  the  
chain p i l la r s  (y ie ld  and abutment p i l ­
la r s )  . The change in  s tress  was ca lcu ­
la te d  by the equation ( 8 ) :

where

422,400 1
( ¥ ) :

and

11.4 -  0 .66  x 10 - 6 Er 

Acrr = change in  s tress  ( p s i ) ,

T0 = i n i t i a l  s tressm eter read ing  
(p e rio d  o f v ib r a t io n ) ,

T = cu rren t s tressm eter reading  
(p e rio d  o f v ib r a t io n ) ,

Er = modulus o f e la s t ic i t y ,  as­
sumed to  be 1 . 0  x 1 0 6 p s i.
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VIBRATING WIRE STRESSMETER—
DATA ANALYSIS

The v ib ra t in g  w ire  stressm eter data  
were analyzed in  a v a r ie ty  of ways 
to  b e tte r  understand the mechanics of 
v e r t ic a l  s tress  r e d is t r ib u t io n  in  the  
gate  road p i l la r s  o f a re tre a t in g  lo n g - 
w a ll p an el. F igure 6 , the genera l form  
in  which the data were f i r s t  prepared fo r  
e v a lu a tio n , shows a p lo t o f s tress  change 
versus face p o s itio n  fo r  each stressm eter  
in  abutment p i l l a r  A2 ( f i g .  7 ) when i t  
was p a rt o f the headgate system » 4 F igure  
8 shows the s tress  changes occurring  in  
the abutment p i l l a r  Aj (see f ig u re  3  fo r  
stressm eter lo c a tio n s ) when i t  was p a rt  
o f the ta i lg a te  system.

General considerations of the s tress  
change data when the abutment p i l ­
la rs  are  p a rt o f the headgate system, as 
shown in  f ig u re  6 , in d ic a te  th a t ( 1 ) a l l

4Some of the stressm eters fa i le d  a f te r  
th e ir  in s ta l la t io n  and are not shown in  
the  f ig u re s  th a t d e p ic t s tre ss  change 
versus d is tan ce to  the longw all fa c e .

stressm eters in  the abutment p i l la r s  
tended to  experience a stress  increase  
throughout the l i f e  o f the panel, w ith  
the zone of maximum stress  increase oc­
cu rrin g  a f te r  the passage of the face ; 
and ( 2 ) no n o ticeab le  s tress  r e l i e f  
occurred during the e x tra c tio n  of the  
rem aining panel. In  the m a jo rity  o f 
cases (13 out of 2 1 ) ,  the genera l shapes 
of the s tress  curves fo r  the o th er abut­
ment p i l la r s  resemble those shown in  
f ig u re  6 .

The s tress  change data shown in  f i g ­
ure 8 fo r  abutment p i l l a r  A] when I t  was 
p a rt o f the ta i lg a te  system in d ic a te  th a t
( 1 ) a l l  o f the stressm eters (o n ly  those 
in  which the data were complete) tended 
to experience a s tress  increase u n t i l  the  
face was approxim ately 140 f t  past the  
a rra y ; ( 2 ) a n o tic e ab le  s tress  r e l i e f  
occurred once the face moved beyond the  
distan ce of 140 f t  past the a rra y ;
(3 ) a l l  o f the s tress  curves had the same 
genera l shape as those shown in  f ig u re  6 ; 
and (4 ) the stressm eters fo r  which the 
data were complete showed th a t s l ig h t ly  
more than h a lf  of the maximum stress

DISTANCE TO FACE, f t

FIGURE 6. - Stress change versus distance to longwall face-array A2, abutment pillar, headgate 
system.
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LEGEND
Vibrating wire 
stressmeter
Flatjack U-cell group
Pillar cross section

B e lt  e n t r y  £

N o t to  sca le

FIGURE 7. - Stressmeter, U-cell group, and cross sectional locations—array A 2, abutment and yield 
pi Ilars.

increase was experienced when the face  
was adjacent to  a rray  A ! . The s tress  
curves in  f ig u re  8 inc lude  the stresses  
caused by the e x tra c tio n  o f panel 1 .

PILLAR STRESS HISTORY OF PANEL PASSES

The f i r s t  question addressed in  terms 
o f data an a lys is  is  when, r e la t iv e  to  the  
moving lo n g w all fa c e , do the chain p i l ­
la rs  of a headgate system experience  
a m a jo r ity  o f th e ir  v e r t ic a l  s tress  in ­
crease? F igure 9 is  a p lo t o f the per­
cent o f maximum s tress  increase versus 
face  p o s itio n . The magnitudes of the  
percent o f maximum s tress  increase are  
determ ined by the fo llo w in g  method. The 
s tress  change fo r  each stressm eter a t a 
given face p o s itio n  is  d iv id ed  by the  
maximum s tress  change occurring  in  th a t  
stressm eter and expressed as a percent­
age. The percentages are then averaged

to  o b ta in  one percentage value fo r  the 
y ie ld  p i l l a r  and one percentage value fo r  
the abutment p i l l a r .

An an a lys is  o f the headgate data in  
f ig u re  9 in d ic a te s  th a t (no te— the f o l ­
lowing statements p e r ta in  to  the average 
s tress  increase w ith in  a p i l l a r )  ( 1 ) at 
the tim e when the face passed the p i l l a r  
lo c a tio n , the abutment p i l l a r  experienced  
only 35 pet of i t s  to t a l  s tress  increase  
and the y ie ld  p i l l a r  experienced only 25 
pet of i t s  t o t a l  s tress  increase; ( 2 ) the 
abutment p i l l a r  d id not experience 75 pet 
of i t s  to t a l  s tress  increase u n t i l  the  
face was approxim ately 1 0 0  f t  past the 
p i l l a r  lo c a tio n ; (3 ) the y ie ld  p i l l a r  did  
not experience 75 pet of i t s  t o t a l  s tress  
increase u n t i l  the face was approxim ately  
130 f t  past the p i l l a r  lo c a tio n ; (4 ) both 
the y ie ld  and abutment p i l la r s  demon­
s tra te d  s im ila r  c h a ra c te r is tic s  in  terms 
o f the assumption of percent of s tress
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DISTANCE TO FACE, f t

FIGURE 8. - Stress change versus distance to longwall face-array A ], abutment pillar, tailgate 
system.

DISTANCE TO FACE, ft

FIGURE 9. - Percentage of maximum stress increase versus distance to longwall face-array A 2, 
abutment and yield pillars, headgate system.
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increase  r e la t iv e  to  face  p o s it io n ; and 
(5 )  the abutment p i l l a r  tended to  assume 
h ig h er percentages of i t s  f u l l  s tress  
s l ig h t ly  before the y ie ld  p i l l a r  d id .

The second question  addressed is  when, 
r e la t iv e  to  the lo n g w a ll fa c e , do the  
chain  p i l la r s  o f a ta i lg a t e  system exper­
ience a m a jo r ity  of t h e ir  v e r t ic a l  s tress  
increase? F igure  10 is  a p lo t  of the
percent o f maximum s tress  increase versus 
face  p o s it io n  fo r  a rra y  A j . A l l  o f the  
stressm eters  a c tiv e  in  the y ie ld  and 
abutment p i l la r s  are used. The magni­
tudes of the percent o f s tress  increase  
are  generated in  the fo llo w in g  manner. 
The la s t  recorded stressm eter read­
ings fo r  both the y ie ld  and abutment p i l ­
l a r  o f a rray  Aj (when a rra y  Aj was p a rt 
o f the headgate system) are subtracted  
from a l l  o f the corresponding stressm eter 
readings of a rra y  Aj (when a rra y  Aj was 
p a rt of the t a i lg a t e  system ). This a l ­
lows an a n a ly s is  o f the data to be con­
ducted o f s tresses in  chain  p i l la r s
caused by the e x tra c tio n  of panel 2  
( t a i lg a t e  s tre s s e s ), independent o f 
stresses caused by the e x tra c tio n  o f

panel 1 (headgate s tre s s e s ). The s tress  
change fo r  each stressm eter a t a g iven  
face p o s it io n  is  d iv id ed  by the maximum 
s tress  change occurring  in  th a t p i l l a r ,  
and the re s u lt  is  expressed as a p ercen t­
age. The percentages are then averaged 
to  o b ta in  one percentage value fo r  the  
y ie ld  p i l l a r  and one percentage value fo r  
the abutment p i l l a r .

An an a lys is  o f the ta i lg a t e  da ta  (in d e ­
pendent of the headgate data ) contained  
in  f ig u re  1 0  in d ic a te s  th a t ( 1 ) both the  
abutment and y ie ld  p i l l a r  experienced  
approxim ately 55 pet of th e ir  maximum 
stress  Increase when the lo n g w all face  
was ad jacent to  the instrum ented p i l la r s ;
( 2 ) the abutment p i l l a r  experienced maxi­
mum s tress  increase when the face  was ap­
p roxim ate ly  140 f t  past the p i l l a r  lo ca ­
t io n ;  (3 ) s tress  r e l i e f  began in  the  
abutment p i l l a r  once the face  moved be­
yond 140 f t  past the p i l l a r  lo c a tio n ;  
(4 ) the y ie ld  p i l l a r  was never stressed  
to more than 63 pet o f maximum s tress  in ­
crease, due to  the fa c t  th a t the maximum 
stress  change experienced by in d iv id u a l  
stressm eters occurred a t  various longw all
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FIGURE 10. - Percentage of maximum stress increase versus distance to longwall face—array A 1t 
abutment and yield pillars, tai I gate system.
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face p o s itio n s ; ( 5 ) s tress  r e l i e f  began h igher percentage of maximum s tress
in  the y ie ld  p i l l a r  when the face moved change s l ig h t ly  before the y ie ld  p i l l a r
beyond 80 f t  past the p i l l a r  lo c a tio n ; d id .
and ( 6 ) the abutment p i l l a r  assumed a

STRESS EXPERIENCE

In  discussing the i n i t i a l  and f in a l  
load ing  in  the headgate chain  p i l la r s  due 
to  lo n g w all m ining, " s ig n if ic a n t  s tress  
increase" ( i n i t i a l  lo ad in g ) is  defined  as 
5 pet o f the maximum s tress  change occur­
r in g  w ith in  a chain p i l l a r ,  and " f in a l  
load ing" is  defined  as 95 pet of the max­
imum s tress  change experienced by a chain  
p i l l a r .

Using abutment p i l l a r  A2 as being rep­
re s e n ta tiv e  o f i n i t i a l  load ing  experience  
o f headgate chain p i l l a r s , i t  was found 
th a t  ( 1 ) th e re  was s ig n if ic a n t  s tress  in ­
crease w ith in  the sk in  o f the abutment 
p i l l a r  (s tressm eter lo c a tio n  9) when the  
face  was approxim ately 150 f t  in  advance 
o f the p i l l a r ;  and ( 2 ) s ig n if ic a n t  s tress  
increase occurred w ith in  the core o f the  
abutment p i l l a r  (s tressm eter lo c a tio n  1 0 ) 
when the face  was approxim ately 1 1 0  f t  in  
advance of the p i l l a r .

S e le c tin g  y ie ld  p i l la r s  A j ,  A2 » and Bj 
as re p res e n ta tive s  o f the f in a l  load ing  
experience o f headgate chain p i l l a r s ,  
these fo llo w in g  statem ents can be made
( 1 ) f in a l  load ing  w ith in  the core o f the  
y ie ld  p i l la r s  was experienced when the  
lo n g w all face was approxim ately 280 f t  
past the p i l l a r  lo c a tio n s ; and ( 2 ) f in a l  
load ing  occurred w ith in  the sk in  o f the  
p i l la r s  when the face  was approxim ately  
600 f t  past the p i l l a r  lo c a tio n s .

Using the y ie ld  and abutment p i l l a r  
o f a rray  A] as re p re s e n ta tiv e  of i n i t i a l  
and f in a l  load ing  experience o f ta i lg a te  
chain  p i l l a r s ,  i t  was found th a t ( 1 ) s ig ­
n i f ic a n t  s tress  increase  was experienced  
by the chain p i l la r s  when the longw all 
face  was more than 700 f t  in  advance of 
the p i l l a r  lo c a tio n s ; ( 2 ) f i n a l  load ing  
occurred in  the abutment p i l l a r  when the  
face was approxim ately 150 f t  past the  
p i l l a r  lo c a tio n ; and (3 )  the y ie ld  p i l l a r  
never achieved the f i n a l  load ing  s ta tu s , 
owing to  the random occurrence o f maximum 
stress  increase experienced by in d iv id u a l  
stressm eters w ith  respect to  longw all 
face  p o s it io n .

STRESS DISTRIBUTION WITHIN CHAIN PILLARS

To address the question of s tress  d is ­
t r ib u t io n  w ith in  the headgate chain p i l ­
la rs  , the d a ta  have been tre a te d  in  two 
d if fe r e n t  ways. The s tress  d is tr ib u tio n s  
are shown as s tress  p ro f i le s  along spe­
c i f i c  cross sections fo r  abutment p i l ­
l a r  A2 and as isopachs fo r  abutment p i l ­
la rs  B] and B2 . Using fig u re s  1 and 7 
as re fe re n c e s , f ig u re  1 1  shows s tress  
p r o f i le s  through the abutment p i l l a r  A2 
fo r  both the maximum values o f s tress  
increase  and the s tress  Increases a t  the  
tim e the face passed the center l in e  of 
a rra y  A2 . Figures 12 and 13 show s tress  
isopachs fo r  the maximum v e r t ic a l  s tress  
increase  in  the abutment p i l la r s  B i and 
B2 , re s p e c tiv e ly .

An e va lu a tio n  of the data contained in  
fig u re s  11, 12, and 13, in d ic a te s  th a t

1. The s tress  d is tr ib u t io n  in  abutment 
p i l l a r  A2 appears to  be h ig h ly  in fluenced  
by the d ire c t io n  of the approaching long­
w a ll fa c e , which does not appear to  be 
the case fo r  abutment p i l la r s  Bj and B2. 
The sk in  o f the abutment p i l l a r  A2 , ad ja ­
cent to  the longw all panel (s tressm eter 
lo c a tio n  9 in  fig u re s  7 and 11^3), con­
ta in s  the peak abutment stress  (maximum 
stress  Increase  experienced by a p i l l a r ) . 
However, fig u re s  12 and 13 re v e a l th a t  
the peak abutment pressures occur in  the  
core or c e n tra l p o rtio n  of the abutment 
p i l la r s  Bj and B2  and not in  the s k in , as 
is  the case fo r  abutment p i l l a r  A2.

2. The data  ra re ly  in d ic a te  h igh skin  
loadings in  the B| and B2 abutment p i l ­
la r s .  Maximum s tress  changes g e n e ra lly  
tend towards the core o f these two abut­
ment p i l la r s .

No statem ents can be made concerning  
the sress d is tr ib u t io n s  w ith in  ta i lg a t e  
p i l l a r s ,  because the data  are in s u f f i ­
c ie n t fo r  c re a tin g  contours of maximum 
s tress  in creases . Many o f the s tre s s ­
meters and/or t h e ir  lead  w ires were des­
troyed as a re s u lt  o f the mining process,
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gate road d e te r io ra t io n , and/or inacces­
s i b i l i t y  when the  longw all face was near 
the  a rra y s .

Abutment pillar cross section Abutment pillar cross section 
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X| 10 II X,
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DISTANCE FROM ABUTMENT PILLAR EDGE, ft

FIGURE 11. - Cross sectional stress increase 
profiles-array A 2, abutment pillar, headgate sys­
tem. A, Cross section 21,22; cross section 
X 1X2; 0,  cross section Y ,Y 2.

STRESS INCREASE MAGNITUDES

The g en era l questions o f magnitudes o f 
chain  p i l l a r  s tress  increases fo r  both  
headgate and ta i lg a t e  systems are ad­
dressed in  ta b le s  1 and 2 , The fo llo w in g  
e xp lan a tio n  of the symbols used in  the  
ta b le s  is  g iven . The maximum increase in  
v e r t ic a l  s tress  experienced by any a c tiv e  
stressm eter w ith in  a chain  p i l l a r  is  
l is t e d  as 6a max* The maximum in crease  in  
v e r t ic a l  s tress  experienced in  the core 
(c e n tr a l  p o rtio n ) o f each chain  p i l l a r  is  
l is t e d  as Aamax_core. The symbol a Q rep­
resents  the in  s itu  v e r t ic a l  s tress  th a t  
e x is te d  in  the  coal p r io r  to  the s t a r t  o f 
m ining (assumed to  be 1  p s l / f t  o f over­
burden) . The f in a l  change in  headgate 
s tre ss  recorded during the e x tra c tio n  o f 
a lo n g w all panel is  l is t e d  as ¿Of, The 
symbol h a r is  the re s u lta n t change in  
s tre ss  and is  equal to  the maximum t a i l ­
gate  s tre ss  change (Aomax) minus the  la s t  
recorded headgate s tress  change (Actf ) fo r  
a p a r t ic u la r  s tressm eter. T h e re fo re , Acrr 
is  the maximum stress  change experienced

LEGEND 
• Stress change, psl 

— '  Stress change Isopach, psl

FIGURE 12, - Stress isopachs for maximum ver­
tical stress increase-array B y  abutment pillar, 
headgate system.

LESEND 
* Stress change, psl 

-----Stress change Isopach, psl

FIGURE 13. - Stress isopachs for maximum ver­
tical stress increase-array B 2, abutment pillar, 
headgate system.



TABLE 1 . -  Overburden s t r e s s  f a c t o r — headgate system

In s tru m en ta tio n  s i t e . . A rray A, A rray A2 A rray B| Array B2 P i l l a r
Abut­ Abut­ Abut­ Abut­ averages
ment Y ie ld ment Y ie ld ment Y ie ld ment Y ie ld Abut­

ment
Y ie ld

Maximum p i l l a r  s tre ss :
^0 |n9 X* * * * * * * * * . p s i . . 1,640 580 2,180 460 630 690 2 , 1 1 0 890 1,640 655
Face p o s it io n . , , f t . . -2 ,5 8 0 - 2 0 0 -500 -500 -2 ,3 8 0 -2 ,0 4 5 -135 -415 NAp NAp
A 0 „ ,„ /o „ .............. .. 3 .6 1.3 4 .2 0 .9 1 . 0 1 . 1 2 . 8 1 , 2 2 ,9 1 . 1“ max' o • • • • • « • * * • •

Maximum core p i l l a r
s tre s s :

^ « a x - c o r e *  . • » • p s i . . 520 340 690 460 600 460 2,050 890 965 538
Face p o s it io n . , , f t . . -2 ,5 8 0 - 2 0 0 -500 -500 -2 ,04 5 -1 ,39 5 -135 -415 NAp NAp
A ^ m a x -co r e /^ o ............ 1 . 2 0 . 8 1,3 0 .9 1 . 1 0 . 8 2 .7 1 , 2 1 , 6 0 .9

NAp Not a p p lic a b le ,
¿ffia x — The change in  maximum stress  o ccurring  in  the p i l l a r ,  
a 0— The v ir g in  s tre s s , assumed to  be 1  p s i / f t  o f overburden.
Aamax_core— The change in  maximum s tress  o ccurring  in  th e  core o f the p i l l a r .

TABLE 2. -  Overburden s tre ss  fa c to r— ta i lg a t e  system

P i l l a r Core o f p i l l a r
Abutment Y ie ld Abutment Y ie ld

3 ,070 2,460 NAp NAp
NAp NAp 1,580 1,390

Face p o s it io n ...............................f t . . -104 -124 -193 -189
1,640 370 80 130
1,430 2,090 NAp NAp

NAp NAp 1,500 1,260
6 , 8 5 .5 NAp NAp

A0 fl|QX_£Qp.0 /  0 Q. * , • * . • • • * » • • • « • * • NAp NAp 3 .5 3.1
3 .2 4 .7 NAp NAp

A0  p* _ £ Q p £ /  0  Q , , , , , . . . NAp NAp 3 .8 2 , 8

NAp Not a p p lic a b le .
Affuax— The change in  maximum s tre ss  occurring  in  a p i l l a r  d u r-

In g  e x tra c t io n  of panel 2 .
Aamax-cor©— The change in  maximum s tress  occurring  in  the core 

o f the p i l l a r .
Actf— The f in a l  change in  s tre ss  recorded during e x tra c tio n  of 

panel 1 .
Aar— R esu ltan t change in  s tre ss  (A0 max-A 0 f ) .
Acir-core— The re s u lta n t change in  s tre ss  (Acrmax_core-A 0 f ) oc­

c u rrin g  in  the  core of the p i l l a r ,
0 o— The v ir g in  s tre s s , assumed to  be 1  p s i / f t  o f overburden.

by a stressm eter during  the e x tra c tio n  o f  
a second panel independent o f the e x tra c ­
t io n  o f the f i r s t  panel.

The fo llo w in g  comments r e la te  to  the  
headgate data  contained in  ta b le  1 .

1. On the average, abutment p i l la r s  
experienced s tress  increase of 2 ,5  times  
the s tre ss  increases experienced by y ie ld  
P i l la r s  (A 0 max_a t3Ut men+/A0 inax-y  i e ld )*



14

2. On the  average, the maximum s tress  
increases w ith in  a y ie ld  or abutment p i l ­
l a r  were 1 .4  tim es the s tress  increases  
experienced a t the core o f the p i l l a r .

3 . A reasonable c o r re la t io n  e x is ts  fo r  
the  param eter A0 max/ a o fo r  a l l  fo u r y ie ld  
p i l l a r s ,  w ith  an average va lu e  of 1 . 1 ; 
such a c o r re la t io n  does not e x is t  fo r  the  
abutment p i l l a r s .

Only the s tressm eter data  o f a rra y  Aj 
could be used to  make in fe ren ces  about 
magnitudes o f ta i lg a t e  chain  p i l l a r  
s tress  in c reases . The fo llo w in g  comments 
r e la te  to  the ta i lg a t e  d a ta  contained in  
ta b le  2 .

1. The abutment p i l l a r  experienced a 
s tre ss  increase  o f 1 . 2  times the  
s tress  increase  experienced by the y ie ld  
p i l l a r .

2 . The maximum s tress  increase w ith in  
th e  y ie ld  or abutment p i l l a r  was 1.9

times the s tress  Increase experienced a t  
the  core o f the p i l l a r s .

3 . On the average, the y ie ld  p i l l a r  
had a h igher increase o f maximum s tress  
change than the  abutment p i l l a r  w ith  r e f ­
erence to  A0 r ; o v e r a l l ,  however, the  
abutment p i l l a r  was s t i l l  more h ig h ly  
stressed than the  y ie ld  p i l l a r  w ith  r e f ­
erence to  Aoma x.

A comparison of ta b le s  1 and 2 shows 
th a t the e x tra c tio n  o f panel 2  caused 
a s tress  increase in  the y ie ld  p i l l a r  
A| 3 .6  times the s tress increase  in  the  
same p i l l a r  when panel 1 was mined. This  
can be seen by comparing the y ie ld  p i l ­
l a r  A] values A0 r and ¿0 r . cora o f ta b le  2  
w ith  the y ie ld  p i l l a r  Aj values A0 roaK 
and A0 max_core o f ta b le  1. No conclusive  
statem ent can be made concerning the  
s tress  increase o f abutment p i l l a r  Aj 
during  the e x tra c tio n s  o f panels 1  and 2 .

ROOF BOLT LOADING

Changes in  load ing  o f the 8 - f t  mechani­
c a l ro o f b o lts  were measured w ith  f l a t -  
ja c k  U ~ c e lls . The U -c e lls  were monitored  
only  when they were p a rt o f the headgate 
system. The g en era l form in  which the  
U -c e l l  d a ta  were prepared fo r  an a lys is  is  
shown in  f ig u re  14, as a p lo t o f the per­
cent o f maximum load  change, experienced  
c o l le c t iv e ly  by U -c e l l  subgroups, v e r­
sus lo n g w all face  p o s itio n . The r e la ­
t iv e  p o s itio n s  o f the U -c e lls  o f group B 
are  shown in  f ig u re  15. The p o s itio n  
o f group B in  a rra y  A 2 is  shown in  f ig ­
ure 7 . The magnitudes o f percent load  
change were determ ined by the fo llo w in g  
method. The U -c e lls  of each group were 
broken down in to  subgroups according to  
th e i r  p o s itio n  in  the e n try  or crosscut 
[a g a in s t the r ib  ( r i b - l i n e )  or cen­
t e r l in e ]  . The loadings o f the U -c e lls  
fo r  each subgroup were averaged a t spe­
c i f i c  lo n g w all face  p o s itio n s  and then  
expressed as a percentage o f maximum load  
change experienced by th a t p a r t ic u la r  
subgroup.

A comparison o f the load change graphs 
o f groups A and D w ith  B o f a rra y  A2 
( f ig u r e  14 is  used as a re p res e n ta tio n  of 
b o lt  load ing  tren d s ) revea led  th a t a l l  
o f the subgroups showed s im ila r  load ing

tre n d s . When the lo n g w all face  was a d ja ­
cent to  a rra y  A2, the h ighest percentage  
of maximum load  change experienced by any 
subgroup was 37 p e t. T h e re fo re , the  ma­
j o r i t y  o f headgate b o lt  load ing  occurs 
a f te r  the passage o f the fa c e . The zone 
o f maximum b o lt  load ing  was experienced  
when the  lo n g w all face was ad jacent to  
and 200 f t  past a rray  A z. A l l  o f the  
c e n te r lin e  subgroups tended to  experience  
a h igher percentage o f maximum load ing  
than the r ib - l in e  subgroups.

Group C o f a rray  A 2 , located  in  the  
e n try  ad jacent to  the lo n g w all p an el, 
experienced a t o t a l l y  d i f fe r e n t  load ing  
p a tte rn  ( f i g .  1 6 ). Subgroup 1C was imme­
d ia te ly  ad jacent to  panel 1 ( f i g .  17) and 
experienced a h igher percentage o f maxi­
mum load ing  than r ib - l in e  subgroup 2C. 
The m a jo r ity  o f ro o f b o lt  load ing  oc­
curred a f t e r  the lo n g w all face was w ith in  
140 f t  o f a rra y  Az (60 pet fo r  subgroup
1C and 75 pet fo r  subgroup 2C ).

The load h is to r ie s  o f the U -c e ll  sub­
groups are used to  examine the maximum 
ro o f b o lt  load ing  due to  lo c a tio n  w ith in  
a gate road. F igure 7 shows the r e la t iv e  
p o s itio n s  o f the U -c e ll  groups in  a rra y
A2. The magnitude o f load ing  fo r  any
group was equated to  the maximum load ing



15

■o» a 
UJ .2  
^  cz  E <  3 x  to  KO
S E
Q o

o
CL

100

80

60

40

20

0

-20
•600 100 200-300  -2 0 0  -100

DISTANCE TO FACE, f t

FIGURE 14. - Percentage of maximum load change versus distance to longwall face-array A 2, group 
B, headgate system.

achieved by any o f i t s  subgroups. Groups 
A and D experienced a maximum load ing  o f 
approxim ately 10,800 l b f .  Group B exper­
ienced a maximum load ing  o f 17,300 l b f .  
This high b o lt load ing  of group B may be 
due not only to  the e x tra c tio n  o f the

lo n g w all panel, but a lso  to  the ir re g u la r  
shape of the abutment p i l l a r  A 2 and to  an 
increase in  the crosscut w id th . The max­
imum b o lt  load ing o f group C was 11,800  
l b f ,  which was 9 pet h igher than the max­
imum b o lt  load ing  o f groups A and D.

CONVERGENCE AND EXTENS0METER STATIONS

Convergence and extensometer s ta tio n s  
were in s ta l le d  in  arrays Bj and B2 
( f i g .  1 ) .  F igure 3 shows the lo c a tio n  of 
these s ta tio n s  w ith in  the a rra y s . Three 
combined convergence and extensometer 
s ta tio n s  were in s ta l le d  in  id e n t ic a l  lo ­
cation s in  each a rra y : s ta t io n  Cj in  the
abutment p i l l a r  crosscut, s ta t io n  C2 in  
the tra c k  e n try , and s ta t io n  C3 in  the  
y ie ld  p i l l a r  crosscut.

Soon a f te r  in s t a l la t io n ,  the conver­
gence pins in s ta l le d  in  the f lo o r  o f 
a rra y  B2 were destroyed by moving face

equipment ( f i g .  5 ) .  In  a d d itio n , the ex­
tensometer data were in a c c u ra te , owing 
to  s lippage of the C-anchors. The only  
re p o rta b le  data of s t ra ta  movement were 
obtained from the convergence s ta tio n s  
in  a rra y  B \ . These s ta tio n s  were moni­
tored  over a 125-day p erio d . Soon a f te r  
the readings were in i t ia t e d ,  the long­
w a ll face was id le d  by a m iners' co n tract 
s t r ik e .  The longw all panel was id le d  
fo r  56 days w ith  the face positioned  
approxim ately 350 f t  from the convergence 
s ta tio n s . This data an a lys is  w i l l  focus
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•  Flatjack U-cell
FIGURE 15, - Location of U-cel ls-array A 2, group B.

on convergence during  the id le  perio d  as 
w e ll as the convergence th a t  was recorded  
when lo n g w all mining a c t iv i t ie s  were 
resumed.

To b e tte r  understand s t r a ta  movement in  
a rra y  B \ , convergence data  were graphed 
as a fu n c tio n  of face  p o s itio n  ( f i g .  1 8 ). 
S ta tio n  C2 > lo cated  in  the tra c k  e n try ,  
experienced a t o t a l  convergence o f 1,358  
in  during the 125-day m onitoring  p e rio d . 
S ta tio n  C ] ,  lo cated  in  the abutment p i l ­
l a r  c ro sscu t, converged 0,871 In  during

, th is  p e rio d . The le a s t movement, 0 .240
I in ,  was recorded a t s ta t io n  C3 lo cated  in

the  y ie ld  p i l l a r  crosscut.
T o ta l convergence fo r  each s ta t io n  was 

subdivided in to  th ree  separate s ltu a -  
t io n s , as shown in  ta b le  3 , S itu a tio n  I  

! shows the amount o f convergence each s ta -
1 t lo n  recorded during  the i n i t i a l  56 days
i when mining was id le d  by the s t r ik e .

S itu a tio n  I I  shows the amount o f conver­
gence th a t occurred when mining a c t iv ­
i t i e s  resumed up to  the time the lo n g w all 
face  was 200 f t  past the s ta t io n s . S itu ­
a t io n  I I I  shows convergence from the  
tim e the face was from 200 to  700 f t  
past the s ta t io n s .

TABLE 3 . -  Convergence—-array B ,,  inches

S ta tio n
c ,

S ta tio n
C 2

S ta tio n
C3

S itu a tio n  I , , , 0 .538 0.482 0.067
S itu a tio n  I I , , ,256 .493 . 1 1 2
S itu a tio n  I I I , ,077 .383 .061

To ta la  , , « ,871 1.358 ,240

S itu a tio n  I :  Convergence when panel
was id le  and 350 f t  before the conver­
gence s ta tio n s  (56 d ays).

S itu a tio n  I I :  Convergence when mining
resumed u n t i l  longw all face was 2 0 0  f t  
past convergence s ta t io n  (42 d ays ).

S itu a tio n  I I I :  Convergence when panel
was from 200 f t  to  700 f t  past the con­
vergence s ta t io n s .

From th is  a n a ly s is , s evera l g en era l­
iz a t io n s  can be made concerning ro o f -  
f lo o r  behavior in  a rra y  B j as panel 2 was 
mined. F i r s t , during s itu a t io n  I ,  th ere  
were s ig n if ic a n t  amounts of convergence 
measured a t a l l  s ta t io n s , although the  
panel was id le d  more than 300 f t  outby. 
S ta tio n  C ], located  c lo ses t to  the long­
w a ll p an e l, recorded the la rg e s t amount 
o f convergence o f a l l  th ree  s itu a t io n s .  
Second, during s itu a t io n  I I  when mining  
a c t iv i t ie s  resumed, s ta tio n s  C 2 and C3 
recorded th e ir  maximum convergence as 
expected. The convergence recorded a t  
s ta t io n  C1, during th is  perio d  o f long­
w a ll  movement, was considerably  less  
than expected. F in a l ly , a l l  th ree  s ta ­
tio n s  recorded the le a s t  movement during  
s itu a t io n  I I I .
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D IS T A N C E  T O  F A C E , f t

FIGURE 16. - Percentage of maximum load change versus distance to fongwall face-array A 2, group 
C, headgate system.

LOADING TRENDS OF HEADGATE AND TAILGATE SYSTEMS

The load ing  h is to r ie s  o f the in s tru ­
mented chain  p i l la r s  can be used to  make 
In fe ren ces  concerning the load ing  trends  
o ccurring  in  both headgate and ta i lg a t e  
systems. Although th e  in fo rm a tio n  a v a i l ­
ab le  fo r  ta i lg a t e  s tresses is  s t r i c t l y  
l im ite d  to  those stresses experienced  
by the y ie ld  and abutment p i l la r s  o f 
a rra y  A2> the d ata  are  s t i l l  v a lu ab le  fo r  
com parative purposes and fo r  d iscussing  
the  e ffe c ts  o f lo n g w all m ining on head­
g a te  and ta i lg a t e  systems.

In  the fo llo w in g  d iscussion o f load­
in g  trends in  the two g ate  road systems, 
"headgate s tre s s ” is  d e fin e d  as the  abut­
ment pressures tra n s fe rre d  onto the head­
gate  chain  p i l l a r s ,  and " ta i lg a te  s tress"  
is  defined  as the abutment pressures  
tra n s fe rre d  onto the ta i lg a t e  chain  
p i l la r s  Independent o f th e  headgate

s tre s s e s . Cumulative gate  road s tre ss  is  
the  summation o f the headgate and t a i l ­
gate  s tre ss e s .

The headgate s tresses were s ig n if ic a n t ­
ly  d i f fe r e n t  from the ta i lg a t e  s tresses  
in  terms o f load ing  tren d  and m agnitude. 
The zone o f maximum stress  increase  
occurred in  the headgate p i l la r s  a f ­
t e r  the  passage o f the lo n g w all face  and 
accounted fo r  65 to  75 pet o f maximum 
s tre ss  in c rease . C onversely, the t a i l ­
gate  p i l la r s  experienced approxim ately  
55 pet o f maximum stress  increase before  
the passage o f the  fa c e . S tress r e l i e f  
never occurred in  the chain p i l la r s  of 
th e  headgate, but began in  the  ta i lg a t e  
when the  face  was approxim ately 140 f t  
past the  chain p i l l a r  lo c a tio n . T a ilg a te  
stresses were approxim ately 2 . 6  tim es the  
headgate stresses when expressed as
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F I G U R E  18. * C o n v e rg e n c e  v e r s u s  d is t a n c e  to long- 

w all  f a c e - a r r a y  B j ,  s tat io ns C  ], Cÿ, and C 3, head- 

gate system .

ra t io s  o f overburden s tress  (A amax/ 0 o) .  
Based upon the headgate stresses and 
cum ulative gate  road s tre ss e s , the abut­
ment p i l la r s  of both gate road systems 
are considered to  have functioned  prop­
e r ly  s in ce , in  a l l  cases, they supported  
a s ig n if ic a n t ly  h igher load than the  
y ie ld  p i l l a r s .

CONCLUSIONS

Based upon an e v a lu a tio n  of the data  
c o lle c te d  in  th is  study and observation  
o f the a c tu a l m ining o f the lo n g w all pan­
e ls  in v o lv e d , the fo llo w in g  conclusions  
were reached:

1. The s t i f f - y i e l d  p i l l a r  design , w ith  
the  abutment p i l la r s  placed ad jacent to  
th e  working panel when they are  p a rt of 
the  headgate system, provided adequate 
support In  th a t  no m ajor ro o f f a l l s  or 
ro o f problems were experienced in  the  
headgates or ta i lg a te s  during  the mining  
o f panels 1, 2 , and 3 . Local ro o f f a l l s  
occurred in  th e  t a i lg a t e ,  but d id  not 
h a l t  p roduction  or In h ib i t  v e n t i la t io n ,

2. The abutment p i l la r s  functioned  
p ro p e rly  s in ce , in  a l l  cases, they were 
more h ig h ly  loaded than the y ie ld  p i l la r s

fo r  both headgate and ta i lg a t e  systems. 
This is  the o b je c tiv e  o f the s t i f f - y i e l d  
p i l l a r  design, and the load ing  behavior 
o f the instrum ented chain p i l la r s  sup­
ports  the theory behind th is  p a r t ic u la r  
design concept.

3. Based upon the h is to r ie s  o f ro o f 
b o lt  load ing  and p i l l a r  s tress  increase  
o f headgates, i t  can be s ta te d  th a t  maxi­
mum load ing  o f headgate ro o f support e le ­
ments occurs a f te r  the passage o f the  
fa c e .

4. W hile no d e f in i t iv e  conclusion can 
be reached as to  whether the  p i l l a r  de­
sign  was co n servative , i t  can be said  
th a t  the design was a t  le a s t  adequate fo r  
the  p a r t ic u la r  geology Involved and panel 
layo u t used.
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